A multi-label classification model for full slice brain computerised tomography image
نویسندگان
چکیده
منابع مشابه
Multi-label Image Classification with A Probabilistic Label Enhancement Model
In this paper, we present a novel probabilistic label enhancement model to tackle multi-label image classification problem. Recognizing multiple objects in images is a challenging problem due to label sparsity, appearance variations of the objects and occlusions. We propose to tackle these difficulties from a novel perspective by constructing auxiliary labels in the output space. Our idea is to...
متن کاملMatrix Completion for Multi-label Image Classification
Recently, image categorization has been an active research topic due to the urgent need to retrieve and browse digital images via semantic keywords. This paper formulates image categorization as a multi-label classification problem using recent advances in matrix completion. Under this setting, classification of testing data is posed as a problem of completing unknown label entries on a data ma...
متن کاملBelief Theory for Large-Scale Multi-label Image Classification
Classifier combination is known to generally perform better than each individual classifier by taking into account the complementarity between the input pieces of information. Dempster-Shafer theory is a framework of interest to make such a fusion at the decision level, and allows in addition to handle the conflict that can exist between the classifiers as well as the uncertainty that remains o...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملEnsemble of k-Labelset Classifiers for Multi-label Image Classification
In the real world, images always have several visual objects instead of only one, which makes it difficult for traditional object recognition methods to deal with them. In this paper, we propose an ensemble method for multi-label image classification. First, we construct an ensemble of k-labelset classifiers. A voting technique is then employed to make predictions for images based on the create...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2020
ISSN: 1471-2105
DOI: 10.1186/s12859-020-3503-0